The Nesprin Family Member ANC-1 Regulates Synapse Formation and Axon Termination by Functioning in a Pathway with RPM-1 and β-Catenin

نویسندگان

  • Erik D. Tulgren
  • Shane M. Turgeon
  • Karla J. Opperman
  • Brock Grill
چکیده

Mutations in Nesprin-1 and 2 (also called Syne-1 and 2) are associated with numerous diseases including autism, cerebellar ataxia, cancer, and Emery-Dreifuss muscular dystrophy. Nesprin-1 and 2 have conserved orthologs in flies and worms called MSP-300 and abnormal nuclear Anchorage 1 (ANC-1), respectively. The Nesprin protein family mediates nuclear and organelle anchorage and positioning. In the nervous system, the only known function of Nesprin-1 and 2 is in regulation of neurogenesis and neural migration. It remains unclear if Nesprin-1 and 2 regulate other functions in neurons. Using a proteomic approach in C. elegans, we have found that ANC-1 binds to the Regulator of Presynaptic Morphology 1 (RPM-1). RPM-1 is part of a conserved family of signaling molecules called Pam/Highwire/RPM-1 (PHR) proteins that are important regulators of neuronal development. We have found that ANC-1, like RPM-1, regulates axon termination and synapse formation. Our genetic analysis indicates that ANC-1 functions via the β-catenin BAR-1, and the ANC-1/BAR-1 pathway functions cell autonomously, downstream of RPM-1 to regulate neuronal development. Further, ANC-1 binding to the nucleus is required for its function in axon termination and synapse formation. We identify variable roles for four different Wnts (LIN-44, EGL-20, CWN-1 and CWN-2) that function through BAR-1 to regulate axon termination. Our study highlights an emerging, broad role for ANC-1 in neuronal development, and unveils a new and unexpected mechanism by which RPM-1 functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PPM - 1 , a PP 2 C α / β phosphatase , regulates axon termination and synapse formation in C . elegans

The PHR (Pam/Highwire/RPM-1) proteins are evolutionarily conserved ubiquitin ligases that regulate axon guidance and synapse formation in C. elegans, Drosophila, zebrafish and mice. In C. elegans, RPM-1 (Regulator of Presynaptic Morphology-1) functions in synapse formation, axon guidance, axon termination, and postsynaptic GLR-1 trafficking. Acting as an E3 ubiquitin ligase, RPM-1 negatively re...

متن کامل

PPM-1, a PP2Cα/β phosphatase, Regulates Axon Termination and Synapse Formation in Caenorhabditis elegans

The PHR (Pam/Highwire/RPM-1) proteins are evolutionarily conserved ubiquitin ligases that regulate axon guidance and synapse formation in Caenorhabditis elegans, Drosophila, zebrafish, and mice. In C. elegans, RPM-1 (Regulator of Presynaptic Morphology-1) functions in synapse formation, axon guidance, axon termination, and postsynaptic GLR-1 trafficking. Acting as an E3 ubiquitin ligase, RPM-1 ...

متن کامل

A MIG-15/JNK-1 MAP kinase cascade opposes RPM-1 signaling in synapse formation and learning

The Pam/Highwire/RPM-1 (PHR) proteins are conserved intracellular signaling hubs that regulate synapse formation and axon termination. The C. elegans PHR protein, called RPM-1, acts as a ubiquitin ligase to inhibit the DLK-1 and MLK-1 MAP kinase pathways. We have identified several kinases that are likely to form a new MAP kinase pathway that suppresses synapse formation defects, but not axon t...

متن کامل

RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans.

Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding regi...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014